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Abstract. High quality samples and absence of superconductivity down to 40 mK make of ZrB2 the best
normal state reference system for the superconducting isostructural MgB2. Actually, the question of pairing
has to be focused on the electron-phonon interaction in the normal state. After presenting the resistivity
measurements of ZrB2, we explain the details of the Bloch-Grüneisen and Einstein models used to deduce
the first results. We then compare experimental de Haas-van Alphen effect data with theoretical Fermi
surfaces to present additional results on electron quasi-particle renormalization. The estimations reveal an
isotropic and negligible coupling constant of in average 〈λtr〉 = 0.145. The contribution of the coupling to
the optical phonon modes is 0.082, in contrast to the known larger coupling of 0.283 [3] to the E2g phonon
mode in MgB2.

PACS. 71.18.+y Fermi surface: calculations and measurements; effective mass, g factor – 71.38.-k
Polarons and electron-phonon interactions – 72.10.-d Theory of electronic transport;
scattering mechanisms – 74.25.Fy Transport properties

1 Introduction

The layered hexagonal diborides and their transport
properties received additional attention after the discov-
ery of superconductivity in the isostructural compound
MgB2 [1]. The superconducting state has been recently de-
scribed through investigations of the electron-phonon cou-
pling (see [2,3] and references therein). But the anomalies
in MgB2 and the origin of superconductivity can be de-
duced when the investigations are extended to the normal
conducting diborides. Inside the class of the high temper-
ature engineering transition metal diborides [4], we chose
the ZrB2, since we established absence of superconductiv-
ity down to 40 mK. ZrB2 can be considered as a convenient
model of the normal state properties in diborides.

We report measurements on the electron normal state
of single crystal ZrB2 and compare them to accurate
lattice dynamics [5] and full potential band [6] calcula-
tions. From this, the quasi-particle renormalization due
to electron-electron and electron-phonon interactions will
be estimated.

2 Experimental methods

A high quality crystal of ZrB2, 1 cm in diameter and
6 cm long, was prepared in 0.8 MPa of helium ambient
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gas by the RF heated floating zone method [7]. The crys-
tal rod surface is 1 mm thick polycrystalline. Two samples
free of grain boundaries were cut from the middle crystal
rod using a spark erosion cutter. Their dimensions were
1.7 × 1.2 × 8.5 mm. The orientations along the major
length were [101̄0] and [0001], in-plane and perpendicular
to the hexagonal crystal plane respectively.

The anisotropy of the resistivity was measured as a
function of temperature using a four point technique. Two
pairs of 0.5 mm wide nickel stripes were electrolytically
plated around the samples at their ends, and copper leads
were soft-soldered around the samples on to these stripes.
Lowest resistance contacts are necessary for very low tem-
perature electrical measurements as to reduce warming
effects and a temperature gradient to the thermometer
clamped on the CuBe sample holder. The signal voltage
was measured with a lock-in amplifier in phase with the
sampling current at 117 Hz. Measurements from room
temperature to 4.2 K were performed travelling the sam-
ple holder in the exchange gas of a liquid helium cryostat.
For the very low temperature interval measurement from
40 mK to 4.2 K the sample was mounted in a demagneti-
zation cryostat.

Magnetization measurements of the de Haas-van
Alphen (dHvA) effect were performed in a 3He-cryostat
for magnetic field sweeps up to 13.5 T and temperatures
of 0.4–2 K. The measurements employed the field modula-
tion method with a balanced coil magnetometer in which
the sample is held. In order to study a crystallographic
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Fig. 1. Temperature dependence of the resistivity of ZrB2 for
current flow i || a∗ = [101̄0] (◦) and i || c = [0001] (∆) down
to 4.2 K (cooling curves). Inset: very low temperature resistiv-
ity about 40 mK for i || a∗ without sign of superconductivity
(warming up curve).

plane the magnetometer is mounted into a one-axis cryo-
genic goniometer, allowing the sample-magnetometer sys-
tem to be rotated about an axis normal to the magnetic
field [8]. Conventional angle steps are 0.5◦ to 2.5◦. To
study the complete Fermi surface of ZrB2, three intersect-
ing crystallographic planes are sufficient. We chose con-
veniently the planes (112̄0), (0001) and (101̄0) and the
following intervals of investigation respectively:

90◦ interval from [0001] to [101̄0]
30◦ interval from [112̄0] to [101̄0]
90◦ interval from [112̄0] to [0001]

The sample filling the coil magnetometer should be cylin-
drical with dimensions 1.5 × 1.5 × 3 mm, but only two
samples with axis parallel to the [0001] and [112̄0] direc-
tion are needed to perform the three scans. The cylinders
were cut with spark erosion from the samples used for the
transport measurements. The axis orientation was accu-
rately determined by x-ray-diffraction analysis. The sam-
ples were chemically polished in diluted HCl and HNO3

solution to remove surface damages and to fit the sam-
ple holder. Reflection Laue photograph method was used
to orient in the rotator the crystallographic plane to be
scanned.

3 Results and discussion

3.1 Electrical resistivity

The electrical resistivities measured for current flow along
the [0001] and [101̄0] axes show a characteristic “simple
metal” temperature dependence and exhibit very little
anisotropy, as shown in Figure 1. Measurements down to
40 mK showed no superconductivity, see inset in Figure 1
for the in-plane resistivity. The small residual resistivities
ρo ≈ 0.5 µΩcm and the large residual resistivity ratios
RRR = ρ(300 K)/ρ(4.2 K) ≈ 20 indicate the high quality
of the crystal samples. The maximum reported value of
RRR is 25 [37].

3.1.1 The Bloch-Grüneisen model

Matthiessen rule states that the measured resis-
tivity ρ at a given temperature T consists of
the temperature-dependent resistivity ρ(T ) and the
temperature-independent residual resistivity ρo as

ρ = ρo + ρ(T ). (1)

ρo is caused by impurities and crystal imperfections and
ρ(T ) is due to electron scattering by lattice vibrations,
when magnetic effects and/or impurities are not taken into
account.

In 1930 Bloch [9] developed a theory for the lattice
resistance of a pure metal as a function of temperature
which led to the formula

ρ(T ) = (m − 1)ρ′ ΘD ·
(

T

ΘD

)m

· Jm

(
ΘD

T

)
(2)

Jm

(
ΘD

T

)
=

∫ ΘD/T

0

zm dz

(ez − 1)(1 − e−z)
(3)

where m = 5 and Jm(x) is another of the class of Debye
integrals [10] for specific heat [11]. The temperature de-
pending part of the resistivity has the form of the general
Bloch-Grüneisen (BG) formula

ρBG = (m − 1)ρ′ T ·
(

T

ΘD

)m−1

· Jm

(
ΘD

T

)
(4)

with m ≤ 5 and Jm(ΘD

T ) from equation (3), which can be
simplified by transformations and substitutions [12] into

Jm

(
ΘD

T

)
= 2m−1

∫ ΘD/2T

0

zm−2
[ z

sinhz

]2

dz. (5)

Integral (5) cannot be solved analytically into a tractable
function but limiting curves are found. For T > ΘD, the
expansion

[ z

sinhz

]2

= 1 − z2

3
+ O

(
z4

)
+ ... (6)

approaches rapidly 1 and equation (5) can be integrated:

Jm

(
ΘD

T

)
=

2m−1

m − 1
[
zm−1

]ΘD/2T

0
, (7)

thus equation (4) becomes

ρBG = ρ′ T. (8)

For T ≤ 0.1 ΘD, Jm(ΘD

T ) tends to a definite numerical
value jm giving for the resistivity the Grüneisen empirical
power law dependence [13]

ρBG = (m − 1) jm ρ′ T ·
(

T

ΘD

)m−1

. (9)

The power index m = 5 for free-electron metals can as-
sume values between 3 and 5 when including the quasi-
particle effects, and reduces to 2 as disorder increases [14].
m = 3 is particularly associated to interband electron-
phonon scattering [15,16].
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Fig. 2. Numerical solution of the BG formula as a function
of reduced temperature T

To
. (a) equation (4) (solid line) is cal-

culated for m = 5, ΘD = To and a given ρ′. Broken lines
are the limiting curves (8) and (9). (b) First derivative of the
functions (4), (8) and (9), scaled to the high temperature limit
ρ′. (c) equation (4) scaled to the high temperature approxima-
tion (8) (solid line) and its dependence on Debye temperature
(broken lines). (d) equation (4) scaled to (8) (solid line) and
its dependence on index m (broken lines).

3.1.2 Study of the BG function

The numerical solution of the integral (5) permitted to
calculate the BG formula. The result as a function of
temperature is shown in Figure 2a, together with the an-
alytical limits (8) and (9). The derivative scaled to the
high temperature limit is shown in Figure 2b. The numer-
ical result of the BG formula predicts that the resistivity
changes curvature at an inflection point inside the inter-
val ΘD

4 < T < ΘD. The first derivative has a maximum,
which decreases to the limit ρ′ for T > ΘD. These in-
formations are necessary for a right interpretation of the
measured resistivity curves. Measurements are commonly
limited to temperature intervals T � ΘD, because of the
high Debye temperatures ΘD > 500 K of the intermetallic
materials. Thus measurements lie commonly in the range
of maximum slope of the BG formula. When the Debye
temperature is large, the maximum becomes flatter. The
derivative is practically constant above ΘD

4 and the resis-
tivity has a linear dependence of the temperature.

The influence of the parameters Debye temperature
ΘD and index m on the BG formula is made clear once
the equation (4) is scaled to equation (8)

σBG =
ρBG

ρ′T
(10)

and is represented as in Figures 2c and 2d.
We found similarity to the Hill sigmoid function

σ =

(
T

ΘD

)m−1

1 +
(

T
ΘD

)m−1 · (11)

Both are step functions of temperature with a smooth
change of curvature (positive maximum of the first deriva-
tive) at the inflection point T BG

i and Ti respectively. Mul-
tiplication of the maximum derivative with the inflection
point value results into the dimensionless inflection factor.
Inflection point and factor are temperature independent
functions of ΘD and m. The details are illustrated in Fig-
ure 3 for σ and for σBG. Ti shows a kind of direct pro-
portionality with both ΘD and m. The value of σ and of
the inflection factor at Ti grow with m but are constant in
ΘD. It follows that increasing ΘD (or Ti), the slope of σ at
the inflection is inversely proportional to Ti. Figure 3 also
shows that σBG behaves like σ only for m between 2 and 3.
T BG

i has in the contrast lower values so that the inflection
factor gives for such values a steeper maximum slope. For
m larger than 3, the inflection point T BG

i behaves differ-
ently than Ti and becomes independent from m. Also the
inflection factor is approximately constant with m, so that
m has no influence in the actual maximum slope of σBG.
The value of σBG at the inflection point reaches a local
maximum for 3 < m < 4.

3.1.3 Data interpretation with the BG model

By fitting equation (8) to the data set inside ΘD

4 < T <
ΘD, as is often done in the literature [3,17], the result-
ing value ρ′ is closed to the maximum of the slope, com-
pare Figures 2a and 2b. The resistivity curves of ZrB2

in Figure 1 have a linear temperature dependence above
T ≈ 225 K, with a temperature coefficient ρ′ of nearly
0.05 µΩ cm/K. According to the extended linearity condi-
tion T ≥ ΘD/4, we obtain a very high Debye temperature
ΘD ≈ 900 K. As discussed in the previous Section 3.1.2,
the temperature interval of the measurements is insuffi-
cient for a comparison with function (8) to be reliable.

A more precise evaluation of ΘD follows from numer-
ical analysis of the data on the basis of equations (4)
and (5) with a fitting procedure, where the parameters
are m, ρ′ and ΘD. Their physical interpretation will be
developed from the electrical transport theory presented
in the next Section 3.1.4. The temperature dependence of
the resistivity curves was fitted in two steps to the func-
tion (1) using for ρ(T ) the BG limit (9) and then for-
mula (4) with (5). The least-squares method minimizes
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Fig. 3. σ and σBG inflection characteristics as a function of
Debye temperature and index m. (from top to bottom) In-
flection point Ti, function value σ(Ti) and inflection factor of
function (11) are compared with inflection point T BG

i , function
value σBG(T BG

i ) and inflection factor of function (10) respec-
tively. (See also Fig. 2c and Fig. 2d for σBG).

the mean squared error

S(m, ρ′, ΘD) =
1

N − 2

∑
k

(ρcalc(Tk) − ρinterp(Tk))2

(12)
between the calculated resistivities and the linear interpo-
lated data values at a regular mesh of N sampling tem-
peratures Tk. The total relative error of the best fit is

S̄(m, ρ′, ΘD) =
1

N − 2

∑
k

(
ρcalc(Tk) − ρinterp(Tk)

ρcalc(Tk)

)2

,

(13)
that would be zero if a true solution existed. Up to nearly
80–90 K all the curves are well fitted by the power law (9)

Fig. 4. Low temperature resistivity of ZrB2. (a) Experimen-
tal data of Figure 1 for i || [0001] (∆) and the fitted Bloch-
Grüneisen function in the low temperature limit (9) (solid
line). (b) The relative deviations of the experimental data from
the fit.

Table 1. Resistivity parameters from the fitted Bloch-
Grüneisen function. Values in square brakets are held constant
during the fitting procedure.

Sample EK1 EK2

resistivity i || [0001] i || [101̄0]
ρo [µΩcm] 0.493 0.475

RRR 19.51 21.03
m [4] [4]

ρ′ [µΩcm/K] 0.04 0.041
ΘD [K] 742.7 724.4

S̄ 1.844 × 10−3 2.848 × 10−3

ρ = ρo+a·T m with m ∼= 4, as can be seen in Figure 4. The
complete data set was then fitted to (4), using the fixed
m = 4 as to reduce the number of fitting parameters. We
obtained the best fitting curves with the parameters listed
in Table 1 [18]. An example is shown in Figure 5. The fits
reproduce the experimental curves very well, except for
deviations between 1 and 10% in the temperature interval
from 50 to 150 K and above 250 K, see Figure 5b. This
is due to the change of curvature in the BG curve around
Θ/4, as shown in Figures 2a and 2b, which is not repro-
duced from the data. It is clear that the BG model repre-
sents for ZrB2 an approximation and other terms should
be introduced with a more extended model.
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Fig. 5. Resistivity of ZrB2. (a) Experimental data of Figure 1
for i || [0001] (∆) and the fitted Bloch-Grüneisen function (solid
line). (b) The relative deviations of the experimental data from
the fit. Intervals of maximum or growing deviation (bars).

3.1.4 The transport theory model

In the formal transport theory the kinetic method pre-
sented in [19] results in a simple expression of the electron
average drift velocity

〈δv〉 =
e vx τ

∂ε/∂v
Ex, (14)

due to the energy gain ∂ε in the applied electric field Ex

along a crystal direction x and for the scattering relaxation
time τ . For the n electrons per unit cell, this means a
current density jx = ne〈δv〉, which defines the electrical
conductivity

σ =
n e2 vx τ

∂ε/∂v
(15)

of the macroscopic transport relation j = σ E. Equa-
tion (15) reduces to the well known relation n e2 τ

me
for

free electrons. Considering realistic quasi-particles energy
bands εn(k), velocities vn(k) and density of states N(εk),
for which

n =
∫ εF

0

N(εk) dε, (16)

we obtain the general relation

σ = 2N(εF )
〈
v2

x

〉
e2τ. (17)

N(εF )
〈
v2

x

〉
is the weighted mean square velocity, averaged

over the density of states for given spin-direction at the
Fermi-level,

N(εF )
〈
v2

x

〉
=

∫ vF

0

N(εk) vxdv ∼=
∑

k

v2
x(k)δ(εk − εF )

(18)
and τ the electron relaxation time for impurity and
phonon dominated scattering

1
τ

=
1

τ imp
+

1
τep

+ ..., (19)

both evaluated in the applied electric field Ex direction.
For a complete discussion see for example [20]. Here τ imp is
a temperature independent term, while τep is the temper-
ature dependent term for the electron-phonon interaction.

F.J. Pinski, P.B. Allen and W.H. Butler [21] presented
calculations in the lowest-order variational approximation
(LOVA), which show the use of realistic phonons, energy
bands, and matrix elements for the scattering time τep,
as opposed to traditional approximations such as the BG
formula. The resulting LOVA formula for (19) is

1
τep

=
2πkBT

�
2

∫ ∞

0

dω

ω
α2(ω)F (ω)

x2

sinh2x
(20)

with x = �ω
2kBT , ω the phonon frequency. The integral

is evaluated in terms of the transport spectral function
α2

tr(ω)F (ω) which is analog of the electron-phonon spec-
tral function of the superconductivity theory [22] and de-
fined in [23]. Therefore, after (17) and (20), the LOVA
expression for the electrical resistivity is

ρep =
2πkBT

�N(εF ) 〈v2
x〉 e2

∫ ∞

0

dω

ω
α2

tr(ω)F (ω)
x2

sinh2x
, (21)

which is also known as Boltzmann equation. By analogy
with the superconducting notation, the parameter λtr is
defined as follows

λtr = 2
∫ ∞

0

dω

ω
α2

tr(ω)F (ω). (22)

The parameter λtr is the transport analog of the dimen-
sionless parameter λ which determines the superconduct-
ing transition temperature Tc [23].

In the high temperature (small x) limit the series ex-
pansion of x2

sinh2x
is conveniently used in equation (20)

1
τep

=
2πkBT

�
2

∫ ∞

0

dω

ω
α2(ω)F (ω)

×
[
1 − 1

3

(
�ω

2kBT

)2

+ ...

]
(23)

and again by analogy to (22) we introduce the definition

λtr 〈ωn〉tr = 2
∫ ∞

0

dωωn−1α2
tr(ω)F (ω). (24)
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〈ωn〉tr is a weighted mean phonon frequency at the nth
order. It follows that at high temperatures equation (20)
and equation (21) become respectively

1
τep

=
2πkBT

�
λtr

[
1 − �

2
〈
ω2

〉
tr

12k2
BT 2

+ ...

]
(25)

ρep =
2πkBT

2�N(εF ) 〈v2
x〉 e2

λtr

[
1 − �

2
〈
ω2

〉
tr

12k2
BT 2

+ ...

]
. (26)

Considering that a typical phonon energy kBΘD = �ωD

leads in the LOVA procedure to the identification
ω2

D = 3
2

〈
ω2

〉
tr

, we found a relation for the high tempera-
ture interval T ≥ ΘD

2 . For these temperatures all the terms
in the expansion can be neglected and equations (25)
and (26) reduce to a linear temperature dependence

1
τep

=
2πkBT

�
λtr (27)

ρep =
2πkBT

2�N(εF ) 〈v2
x〉 e2

λtr. (28)

Equation (28) is a modern version of the equations (2)
or (4) derived earlier by Bloch. It is generalized to in-
clude realistic (nonspherical) energy bands, phonons and
electron-phonon matrix elements but it is based on a
model employing Debye phonons, a spherical Fermi sur-
face and deformation-potential electron-phonon coupling
via longitudinal phonons only, with no umklapp scatter-
ing [21]. Thus, assuming a spherical Fermi surface, the fac-
tor v2

x(k) in equation (18) can be replaced by a constant
v2

F . The integrals that conduct to the transport spectral
function result in the Debye approximation

α2
tr(ω)FD(ω) = 2λD

(
ω

ωD

)4

Θ(ωD − ω), (29)

where ωD is the Debye frequency, λD ≈ λtr . The step
function Θ(ωD − ω) is equal to unit for 0 < ω < ωD and
zero outside. For a comparison of equation (29) with real
spectral functions see [21].

Using the spectral function (29), the expression for the
resistivity (21) becomes

ρD =
2πkBT

�N(εF ) 〈v2
x〉 e2

∫ ωD

0

dω

ω

x2

sinh2x
2λtr

(
ω

ωD

)4

. (30)

Elementary substitutions [24] transform it into

ρD =
2πkBT

2�N(εF ) 〈v2
x〉 e2

λtr 4
(

T

ΘD

)4

24

∫ ΘD
2T

0

x3 x2

sinh2x
dx,

(31)
which reproduces equation ρBG in (4) for m = 5, thus
giving an expression for the temperature coefficient

ρ′ =
2πkB

2�N(εF ) 〈v2
x〉 e2

λtr. (32)

Although equation (31) for the resistivity is based on a
highly simplified model, it captures the correct trends

of the temperature dependence and, considering equa-
tion (28), reproduces the LOVA calculated result in the
high temperature limit

ρep ∼= ρD = ρBG = ρ′ T. (33)

The electrical resistivity of a crystalline metal is related
to the quasi-particle transport scattering rate 1

τ and the
Drude plasma frequency Ωp with

ρ =
1

ε0 Ω2
p τ

, (34)

according to the Drude relation [25]. Considering ρ to
stand for the lattice resistance ρ(T ), 1

τ can then be re-
lated to the transport electron-phonon coupling parame-
ter λtr through the high-temperature expansion (25), thus
leading in the linear region [17] to

ρ(T ) =
2πkBT

� ε0 Ω2
p

λtr (35)

and in general after (33) to

ρ′ =
∂ρ

∂T
=

2πkB

� ε0 Ω2
p

λtr . (36)

As seen in the numerical analysis of Section 3.1.2, consid-
ering this equation in the range T > ΘD

4 , the first deriva-
tive approximates ρ′ of equation (8) and also the constant
λtr at an upper limit. But if the plasma frequency Ωp

is known from energy-band theory calculations or optical
measurements, equation (36) can be introduced in equa-
tion (4) and used in the least-squares method 3.1.3 to
obtain from an experimental curve of ρ empirical values
of Debye temperature and electron-phonon coupling con-
stant as fitting parameters.

If the material is superconducting, the resulting λtr

may then be compared with a value for λ obtained from
the experimental Tc according to the McMillan equa-
tion [23]

Tc =
ΘD

1.45
exp

(
− 1.04(1 + λ)

λ − µ∗(1 + 0.62λ)

)
. (37)

ΘD is the Debye temperature and µ∗ is the Coulomb pseu-
dopotential strength representing a repulsive electron-
electron interaction.

3.1.5 Developing the model: optical-phonons contribution

Since ZrB2 has more than one atom per unit cell, it is
likely that an additional scattering due to highly ener-
getic optical mode phonons [26] occurs, which causes the
steady departure of the data from the Bloch-Grüneisen be-
haviour. To take the optical-phonon contribution explic-
itly into account [3,27,28], the transport spectral function
of the general Boltzmann expression for the resistivity (21)
is extended to

α2
tr(ω)F (ω) = α2

tr(ω)FD(ω) + α2
tr(ω)FE(ω), (38)
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thus distinguishing the acoustic and optical phonon dom-
inated scattering

1
τep

∼= 1
τD

+
1
τE

, (39)

because of the assumption that the contributions from
acoustic and optical modes are additive (Matthiessen
rule). The first term of (38) is the Debye approxima-
tion (29) which gives the BG equation (31), the second
term represents the Einstein approximation

α2
tr(ω)FE(ω) =

1
2
λE ωE δ(ω − ωE), (40)

with ωE a characteristic Einstein phonon frequency, λE

the electron-phonon coupling constant for the Einstein
phonons and δ(ω −ωE) a delta-function at ω = ωE . For a
comparison with the complete spectral function, see [29].

In analogy with (30), the optical mode term of the
resistivity becomes

ρE =
2πkBT

�N(εF ) 〈v2
x〉 e2

∫ ωmax

0

dω

ω

x2

sinh2x

1
2
λEωEδ(ω − ωE).

(41)
The resistivity formula can be easily written [30] as

ρE =
2πkBT

2�N(εF ) 〈v2
x〉 e2

λE

(
ΘE

2T

)2

sinh2
(

ΘE

2T

) , (42)

which we call the Einstein formula. For high temperatures
we substituted the last term with the series expansion (6).
At T > ΘE equation (42) is a linear function

ρE = ρ′ET with ρ′E =
2πkB

2�N(εF ) 〈v2
x〉 e2

λE . (43)

For a comparison with the BG formula see Figure 6a. At
intermediate temperatures the second order term of the
expansion must be considered and the resistivity can be
approximated with

ρE = ρ′E T

[
1 − Θ2

E

12T 2

]
, (44)

an inverse function of the type aT − bT−1.
At very low temperatures T < 0.1 ΘE the terms of

higher order cannot be neglected and a better approxima-
tion can be reached with the exponential representation

ρE = 2ρ′E T

(
ΘE

T

)2

1
2e

ΘE
T − 1

. (45)

The limit curves and function (42) are scaled to equa-
tion (43) and represented in Figure 6c, in analogy to Fig-
ure 2c. This procedure permitted to isolate the sigmoid
term dependent on the parameter ΘE

σE =

(
ΘE

2T

)2

sinh2
(

ΘE

2T

) . (46)

Fig. 6. The Einstein formula as a function of the reduced tem-
perature T

T1
. (a) Comparison of equation (42) with the Bloch-

Grüneisen function of Figure 2 for m = 5, ρ′
E = ρ′, ΘE = 2ΘD

(solid lines). Dotted lines are the high temperature limiting
curves (43) and (8). (b) First derivative of the functions (42)
and (4) scaled to ρ′

E and ρ′ respectively, the high tempera-
ture limits. (c) equation (42) scaled to the high temperature
approximation (43) in analogy to function (10) (solid lines).
The Einstein term is also compared to the approximating func-
tions (44) and (45) for middle-high and low temperature range
(dashed lines).

Figure 7 shows the characteristics of σE and can be com-
pared to Figure 3 for the Bloch-Grüneisen. The inflection
point T E

i increases more rapidly with the temperature pa-
rameter, also see Figure 6c. The value of σE and of the
inflection factor at T E

i are constant and comparable to the
constant values of σBG for m > 3. It follows that the in-
flection factor gives for the physically significant interval
ΘE > ΘD a smaller slope at the inflection point, except
for m ≈ 2. The use of the spectral function (38) leads with
relations (39), (34) and (35) to very important relations

ρep ∼= ρBG + ρE (47)

λtr
∼= λD + λE =

� ε0 Ω2
p

2πkB
(ρ′ + ρ′E). (48)

Thus considering the composition of the two formulas (4)
and (42) for the resistivity, one can obtain the total
electron-phonon coupling by summation of the single
terms.
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Fig. 7. σE inflection characteristics as a function of Einstein
temperature. (from top to bottom) Plots for the inflection
point T E

i , function value σE(T E
i ) and inflection factor of the

function (46) are compared with the characteristics of σBG, see
Figure 6c. The representation agrees with Figure 3, although
σE does not depend on the index m.

3.1.6 Data interpretation with the transport model

The calculated spectral function [5] represented in Fig-
ure 8 shows a separated high contribution of optical
phonons to the spectrum of ZrB2, which is inconsistent
with the Debye approximation (29) up to the Debye tem-
perature as the cutoff frequency of the acoustic modes.

The optical phonon part can be easily represented by
a delta function so that the Einstein contribution (42)
must now be taken into account. The resistivity data are
analysed using the expression (1) extended with (47) to

ρ = ρo + ρBG + ρE . (49)

Fig. 8. Calculated electron-phonon spectral function of
ZrB2 [5]. Broken curves are Debye (29) and Einstein (40) ap-
proximations of the realistic spectral function for some of the
characteristic temperatures ΘD, ΘE listed in Table 2.

Equation (49) is fitted to the data using the previous least-
squares method for the Bloch-Grüneisen formula. Fitting
parameters are now ρ′, ΘD, ρ′E , ΘE , while m = 4 is fixed.
We obtained the best fitting curves with the parameters
listed in Table 2. An example is shown in Figure 9. The
fitting is considerably improved in comparison to the pre-
vious calculation for Figure 5, which refers to the same
wide temperature range.

The obtained ΘD ≈ 610 K in this approximation is
less than the estimation from a simple Bloch-Grüneisen
approximation, and is closer to 478 K obtained from the
specific heat measurement of one sample of the same crys-
tal [41]. However, the latter is a more reasonable value for
a Debye temperature representing the cutoff energy for
the acoustic phonons of ZrB2 after Figure 8.

3.1.7 Rigid-fitting

The deviations are equally distributed on the fitted val-
ues, thus it is straightforward to take as constant those
parameters, for which reliable values are known. It helps
to reduce the number of fitting parameters.

Different sets of fixed parameters are listed with the re-
sults for the free parameters in Table 2. Their curves are
represented in Figure 9. Actually, a very good fit is ob-
tained for the Debye temperature fixed to the value from
specific heat and the Einstein temperature fixed to 820 K,
the value of the high peak of the optical phonons, Figure 8
(dotted lines).

3.1.8 Total electron-phonon coupling constant in ZrB2

Optical measurements and local density approximation
(LDA) calculations give for the plasma frequency �Ωp of
ZrB2 values between 3.16 eV and 4.1 eV [31]. Thus λD

and λE estimated from equation (48) are in average 0.059
and 0.082 respectively for the [0001]-direction coupling,
giving a total coupling constant of 0.141. For the in-plane
coupling we estimate λD = 0.066 and λE = 0.082, giving
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Table 2. Resistivity parameters from the fitted Bloch-Grüneisen-Einstein function. Values in square brakets are held constant
during the fit.

sample EK1 EK2

m [4] [4]
ρ′ [µΩ cm/K] 0.029 0.018 0.026 0.021 0.032 0.02 0.027 0.022

ΘD [K] 609.7 [478] 602.5 [478] 615.4 [478] 588 [478]
ρ′

E [µΩcm/K] 0.018 0.025 0.016 0.027 0.017 0.025 0.015 0.027
ΘE [K] 1101 [820] [820] 959.3 1179 [820] [820] 959

S̄ 4.54 × 10−5 3.29 × 10−4 4.6 × 10−4 1.3 × 10−3 2.94 × 10−5 1.84 × 10−4 7.52 × 10−4 7.08 × 10−3

Fig. 9. Resistivity of ZrB2. (a) experimental data for i || [0001]
(∆) and the fitted functions with the Bloch-Grüneisen and the
Einstein term (solid lines). (b) The relative deviations of the
experimental data from the fits. The broken lines refer to fits
with different set of fixed parameters, which values are reported
in Table 2. The solid line instead refers to the fit with no fixed
parameters, except for m = 4. See also Figure 5 for comparison.

a total coupling constant of 0.148. The values for the tem-
perature coefficients used in equation (48) result from the
rigid-fitting. In the contrast, λD and λE for the in-plane
coupling of MgB2 are estimated in [3] as 0.075 and 0.283,
giving a larger total coupling constant of 0.36.

Introducing the total mean value λtr = 0.141 or 0.148,
as estimation for λ, and ΘD = 478 K in the McMillan for-
mula (37) we find, assuming a standard value of µ∗ = 0.10,
that the superconducting transition temperature should
be in the order of pK. This conclusion is confirmed by
the observed lack of superconductivity above 40 mK. The
transport value for MgB2 [3] instead would predict rea-
sonably the Tc on the order of K.

Moreover, the in-plane λE of ZrB2 quantifies the cou-
pling to the out-of-plane vibration of the boron atoms B1g

and to the relative vibrations of the zirconium and boron
sublattices A2u, E1u. The in-plane boron vibration mode
E2g forms the peak at the highest frequency and does
not contribute to the λE [5,32,33]. The larger λ for the
Einstein phonon indicates a dominant contribution of the
optical phonons in the total electron-phonon coupling, but
not of the E2g mode. The E2g mode of MgB2 is in the
contrary softened to lower energies and gives a very large
contribution in the same intermediate region of the opti-
cal peak of ZrB2 [32]. The coupling to the E2g mode in
MgB2 is alone a factor 4 larger than the coupling to the
optical mode in ZrB2. These two aspects can be consid-
ered as the substantial differences of MgB2 from ZrB2 and
the diborides, explaining the necessary conditions for the
superconductivity in the simple layered system.

3.2 The de Haas-van Alphen effect

dHvA frequencies for the different crystal orientations in
magnetic field were deduced from fast Fourier transform
(FFT) spectra of the dHvA oscillations as a function of the
inverse field 1/B at fixed temperature (400 mK) according
to equation (50) (an example in Fig. 10). The cyclotron
mass m∗ for each extremal Fermi sheet was obtained from
the amplitudes of the corresponding FFT peak by equal
field scans (8–11 T) at different temperatures (0.4–1.5 K).

3.2.1 The Lifshitz-Kosevich theory

The dHvA effect is the oscillatory variation of the magne-
tization M of the conduction electrons with the magnetic
induction B and can be expressed for one extremal Fermi
sheet and no higher dHvA harmonics [34,35] as

M = A(B, T, TD) sin
(

2πF

B
+ ϕ

)
(50)

A(B, T, TD) = A0(B, TD)
b m∗T/B

sinh(b m∗T/B)
(51)

A0(B, TD) = m(B) e−
b m∗TD

B cos
(π

2
g m∗

)
(52)

m(B) = −
( e

π

) 5
2 F V

m∗ m0

(
B

2�

) 1
2

(
∂2Aex

∂k2
||B

)− 1
2

. (53)
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Fig. 10. dHvA oscillation in ZrB2. (a) dHvA signal from Fermi
sheets parallel to the (0001)-plane. (b) FFT of the data com-
pared with calculated frequencies [6].

b has the value 14.69 TK−1 and ϕ is a phase constant; F ,
Aex, m∗, TD are the dHvA frequency, the Fermi sheet area,
the enhanced cyclotron mass in unit of free-electron mass
m0 and the Dingle temperature of the extremal Fermi
sheet under consideration.

3.2.2 Data analysis

Equation (51) can be rewritten as

ln
[
A

T

(
1 − e−2 m∗t

)]
= lnA0−m∗t with t =

b T

B
· (54)

This is a self-consistent formula [36] for m∗ in the rescaled
temperature t. Thus the measured dHvA amplitudes
A(B, T ) and a guess value m∗ = 0.5 or 1 were inserted
in the left side of equation (54) to evaluate from the slope
the m∗ for the following iteration step. This procedure is
then repeated with the new calculated m∗ until a converg-
ing value of m∗ is reached. The final data follow the linear
dependence very good, see Figure 11. From the dHvA fre-
quencies F and the effective masses m∗ results an effective
Fermi velocity

vf =
�

m∗ m0

√
Aex

π
=

1
m∗ m0

√
2 �eF , (55)

Fig. 11. Temperature dependence of the dHvA amplitudes of
the fundamental oscillations for field parallel to [0001] (solid
lines). The slope for each frequency gives the corresponding ef-
fective mass m∗ after equation (54). The dotted lines represent
the temperature dependence for the calculated band masses
in [6].

the first part is a simplification for a circular Fermi
sheet and the second comes from the Onsager equation
F = � Aex/2πe.

3.2.3 Averaged electron-phonon coupling constant

Averaged values 〈λ〉 from the local electron-phonon en-
hancement factor 1 + λ(k) on extremal Fermi sheets were
obtained by comparing the calculated [6] band masses
mb with the dHvA cyclotron masses m∗, which include
electron-phonon renormalization:

m∗ = mb (1 + 〈λ〉) . (56)

The results are shown in Figure 11 and Table 3. As ref-
erence we insert frequencies from other field modulation
measurements [37] conduced at temperature of 1.5 K and
magnetic induction up to 6 T. Under these conditions we
realized that only the low frequencies (α, β) showed large
amplitudes. To improve accuracy in the analysis of high
frequencies and heavy masses, we extended the measure-
ments up to 11 T and at lower temperatures down to
400 mK (Fig. 10), as demanded from the amplitude fac-
tor (51). In the plane (0001), our results for the effective
masses agree with the LDA data, hinting at a negligible
electron-phonon coupling or comparable with the small
measurement uncertainty.

4 Conclusion

Electrical transport measurements on ZrB2 single crys-
tals were performed accurately and analysed in the Bloch-
Grüneisen approximation. Inadequacy in the interpreta-
tion of the data suggested an analysis beyond the BG
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Table 3. Calculated dHvA parameters for ZrB2 [6] in comparison with data of reference [37] and present work [8]. The data
confirm the previous results [38].

F[37] F[8] Fcalc [6] mb [6] |m∗|[8] |〈λ〉|[8] vf [8]

sample orbit
Fermisheet

[kT ] [kT ] [kT ] [me] [me] [105 m/s]

EK2 β||(101̄0) 0.300 0.303 ± 0.009 0.305 0.103 -[39] - -
β||(112̄0) 0.343 0.348 ± 0.009 - - 0.120 ± 0.005 - 9.956
ζ||(112̄0) 4.23 4.198 ± 0.009 - - 0.482 ± 0.007 - 8.572

EK1 α||(0001) 0.238 0.235 ± 0.030 - - - [39] - -
ε||(0001) 1.81 1.789 ± 0.030 1.84 –0.38 0.313 ± 0.005 0.17 ± 0.01 8.613
µ||(0001) 2.46 2.435 ± 0.030 2.43 –0.60 0.531 ± 0.005 0.12 ± 0.01 5.927
ν||(0001) 2.84 2.845 ± 0.030 2.92 –0.41 0.430 ± 0.004 0.05 ± 0.01 7.913
ξ||(0001) 6.05 6.013 ± 0.030 6.78 0.51 0.50 ± 0.02 0.02 ± 0.04 9.902

approximation and an additional term had to be intro-
duced. Anisotropic electron-phonon interactions are esti-
mated and compared to the normal state interactions in
MgB2, permitting further insight into the origin of super-
conductivity in simple layered systems.

Furthermore, studies of the de Haas-van Alphen effect
provide crucial informations about the electronic proper-
ties. From the observation of oscillatory magnetization in
ZrB2, the shape of the theoretical Fermi surface [6] was
confirmed and the effective masses of carriers on individual
Fermi sheets were determined. Then, from the deviation
with the results of band-structure calculations, electron-
phonon coupling of quasi-particles was estimated.

As another probe for the electron-phonon coupling
in ZrB2, the λtr can be obtained from the experimen-
tal value of the electronic specific-heat zero temperature
coefficient γ and the band-theoretical value of the quasi-
particle density of states at the Fermi energy N(εF ) [40]. γ
is proportional to the true quasi-particle density of states
at the Fermi energy Nγ(εF )

γ =
π2 k2

B

3
Nγ(εF ) , (57)

and many-body effects make Nγ(εF ) larger than N(εF )

1 + λγ =
Nγ(εF )
N(εF )

. (58)

λγ is equal to λtr provided N(εF ) is calculated from an ex-
act quasi-particle band structure which includes all many-
body effects except the electron-phonon interaction [22].
Values for Nγ(εF ) and N(εF ) of ZrB2 are 0.298 eV−1 [41]
and 0.26 eV−1 [6] respectively. The resulting λtr from
equation (58) is as small as 0.14, comparable with the
results from transport and dHvA measurements.

The estimated reliability of the empirical values for
λtr and 1 + λγ is about 10–20%, so that, for small lamb-
das, λγ is a much less accurate number. Nevertheless we
were able to demonstrate with three different experimental
procedures (resistivity, dHvA and specific heat) consistent
results of a very small electron-phonon coupling constant,
smaller than 0.15. Hence, in contrast to MgB2, very weak
electron-phonon interactions and decoupling with the E2g

mode are shown to be responsible in the absence of super-
conductivity in ZrB2 and diborides.
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